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Programmable Manufacturing Advisor – A Tool for Automating
Decision-Making in Production Systems1

Programmable Manufacturing Advisor (PMA) is a device intended to
automate decision-making in manufacturing environment. Programming
and installing a PMA at any production system makes it smart: it
becomes capable of self-diagnosing and providing the Operations Manager
with an advice for achieving the desired productivity improvement.
In this paper, theoretical/analytical foundations of PMA are outlined,
its software/hardware implementations are commented upon, and
demonstrations of PMA-based Smart Production Systems are provided
using an automotive underbody assembly system and a hot-dip galvanization
plant.

A personal note:
I first met Yakov Zalmanovich Tsypkin in 1964, shortly after joining IAT as a doctoral

student (aspirant). By that time, I was familiar with his two books on relay systems
and on impulsive control, both, in my opinion, classics in control theory. Although we
did not have a personal relationship, I always admired his work and never missed his
seminar presentations – until 1977 when I left IAT (by that time – IPU). The first two of
his seminars I attended were on robust statistics and on statistical approach to pattern
recognition (in the current terminology, machine learning). As I recalled, these lectures
took place in the old IAT building at Kalanchevka, in the large conference room, filled
to capacity, with standing room only. Later on, in the new building at Profsouznay, his
lectures – always full of creativity, wisdom, and humor – were equally well attended and
became special events for all at the Institute – old and young alike.

Our personal relationship began in the late 80’s or early 90’s, when Y.Z. visited us at
the University of Michigan. He gave a wonderful lecture on robust control at my seminar
in the EECS Department, again impressing the audience by his scientific results and
engaging personality. Since then, we met on many occasions, both in Russia and other
countries at various conferences.

1The work of P. Alavian and S. M. Meerkov was supported in part by the US National Institute of
Standards and Technology Grant Number 70NANB17H214. The work of L. Zhang was supported in part
by the National Institute of Standards and Technology Grant Number 70NANB18H024.
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Through these contacts and from previous observations, I came to know Y.Z. quite well
and perceived two main features of his personality: civil courage and scientific excitement.
Here are two examples:

In the difficult times of the late 60’s and early 70’s, a number of well-known scientists
lost their jobs due to political stands in support of the dissident movement and alike.
In this situation, Y.Z. had the courage to invite two of them into his Lab and was able
to secure their appointments through the Institute administration. Needless to say, this
saved their scientific lives and brought additional prestige to the Institute and Russian
research on control as a whole.

As for the scientific excitement, here is a story. After his visit to Michigan, I was giving
Y.Z. a ride to the airport. While on the highway, we got into a discussion on periodic
controllers and their ability to ensure infinite sector of absolute stability for closed-loop
system with any causal time-invariant plant. The discussion became so intense that we
missed the airport exit. So, we had to turn around, but . . . missed the exit again. Only on
the third attempt, we reached the airport. After decades in science, Y.Z. was still excited
with technical issues as a young scientist!

Indeed, Y.Z. remained young in many respects until, unfortunately the premature, end
of his life. His personality and his scientific results will always be a bright page of control
theory world-wide.

Semyon Meerkov

1. Introduction

Production systems are machines and buffers arranged so as to produce a desired
product. Typically, production systems in modern manufacturing environment are quite
complex, consisting of hundreds or even thousands of people and machines. While in
many cases manufacturing equipment is highly automated, decision-making in production
systems is practically always “manual” – most of the decision-making in daily operations
or in design of continuous improvement projects is based on managerial common sense
and experience, assisted, in some cases, by computer simulations. In this situation, it is
not surprising that production losses are very large: in dozens of case-studies at various
industrial plants, we have discovered that throughput losses of 20%-30% are quite common
in practice.

To help recover these losses, we have developed an analytical theory of Production
Systems Engineering (PSE). Every problem addressed in this theory has its origin on the
factory floor; almost every solution obtained has been implemented in practice. The main
results of this theory have been summarized in the textbook by Li and Meerkov (2009)
and subsequent publications (see, for instance, Meerkov and Yan (2016) and Alavian et al.
(2017)).

During the last 30 years, PSE methods have been applied at numerous
industrial plants, consistently leading to substantial reduction of production losses and
corresponding productivity improvement, often in 10-20% range. These applications have
been carried out “manually”: a team of researchers would develop a mathematical model
of the production system at hand, apply PSE methods, and calculate optimal steps for
continuous improvement with rigorously predicted results. In most cases, the suggested
improvements have been implemented on the factory floor and led to productivity
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improvements close to those predicted analytically. Such applications have been carried
out at plants of General Motors, Ford, Chrysler, Toyota, Volvo, Tesla, Visteon, Harley-
Davidson, General Electric, Kroger, Kraft, MillerCoors, Lexmark, etc.

A drawback of this “manual” approach is that after the end of the project, the systems
would often return to an inefficient state, perhaps due to other reasons for performance
losses, which might have not existed previously. This experience led us to the idea of
automating decision-making in production systems by creating a device, which could be
used for decision-making on a continuous basis and by factory floor managerial personnel
without special training in PSE or analytics in general.

Recently, we have developed such a device and call it Programmable Manufacturing
Advisor (PMA). Conceptually, PMA is similar to PLC (Programmable Logic Controller,
see, for instance, Bolton (2015)). The difference is that PLC is intended to automate
production systems equipment, while PMA automates decision-making. Programming
and installing a PMA at any production system makes it smart: it becomes capable of
self-diagnosing and autonomously developing continuous improvement projects, leading to
the productivity improvement desired by the Operations Manager (if at all possible). We
call such systems PMA-based Smart Production Systems (PMA-Based SPS). Note that by
making production systems smart, PMA contributes to one of the four areas of emphasis
of Industry 4.0 – Smart Manufacturing (see Kagermann et al. (2013), Schlechtendahl et al.
(2015), and Liao et al. (2017)).

PMA consists of three units:

• Information Unit (IU), which constructs and, based on factory floor equipment
status measurements, continuously updates a mathematical model of the production
system at hand.

• Analytics Unit (AU), which autonomously evaluates system health and efficacy of
potential improvement scenarios; this is carried out using the analytical methods of
PSE.

• Optimization Unit (OU), which calculates optimal steps for achieving the desired
productivity improvement and offers them as an advice to the Operations Manager;
this is carried out based on search techniques, similar to those used in Artificial
Intelligence.

Accordingly, the architecture of PMA-based SPS is shown in Fig. 1. As one can see,
PMA has two inputs and two outputs. One input is represented by the Measurements of
the production system’s equipment status. Another input is the Desired Productivity
Improvement (DPI) and the Admissible Action Space (AAS), both provided by the
Operations Manager (OM). The DPI indicates the performance metric to be improved and
the extent to which it must be modified (e.g., the throughput increased by 10% or the
production lead time and work-in-process decreased by 30%, etc.). The AAS indicates
means for achieving the required improvement (e.g., machine cycle time adjustment,
skilled trades priority assignment, raw material release policy modification, or changes
in the number of carriers in closed systems). The outputs of PMA are the System Health
and Optimal Advice for continuous improvement, both provided to OM. Finally, the
output of PMA-based SPS as a whole is the Resulting Productivity obtained after the
improvement project has been implemented.
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Рис. 1. PMA-based SPS architecture

The goals of this paper are to describe analytical foundations of PMA and its
software/hardware implementations, as well as to demonstrate PMA-based SPS operation
at an automotive underbody assembly system and a hot-dip galvanization plant.

To this end, Section 2 describes production system types, for which a PMA can be
programmed, and the equipment parameters and performance metrics involved. Sections
3, 4, and 5 present analytical foundations of IU, AU and OU, respectively. In Section
6, the software/hardware implementations of PMA and workflow of PMA-based SPS
are described. In Sections 7 and 8, screenshots demonstrating smart production systems
operation are presented. Finally, Section 9 formulates the conclusion and topics for future
work. The list of abbreviations and notations is given at the end of the paper.

2. Production Systems Types, Parameters, and Performance Metrics

2.1. Types of production systems

The types of production systems addressed in SPS are:

• Serial lines (Fig. 2(a)), where the machines (circles) and buffers (rectangles) are
arranged in a consecutive order to produce a desired product (part). If the processing
times of all machines are the same, the line is called synchronous ; otherwise, it is
asynchronous.

• Serial lines with product quality inspection devices (Fig. 2(b)), where the black circles
represent quality inspection devices, which are supposed to identify and remove
defective parts, produced by the machines represented by shaded circles.

• Serial lines with rework (Fig. 2(c)), where the defective parts are repaired and
returned for reprocessing.

• Closed serial lines (Fig. 2(d)), where the parts are transported on carriers, and after
a part is produced, the carrier is returned to the return buffer (square), which makes
the carriers available for the incoming parts.
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• Assembly systems (Fig. 2(e)), where two or more serial lines produce subassemblies
to be merged in the main line. (Note that serial lines may also contain assembly
operations, but the subassemblies involved are either purchased parts or supplied
by other departments.)

• Multi-Job Production systems (Fig. 2(f)), where different job-types (e.g., J1 and
J2) are produced by the same sequence of manufacturing operations, perhaps with
different processing times. In addition to other parameters (described in the next
subsection), these systems are characterized by the product-mix of parts being
manufactured.

 
 

(a) Serial line 
 

(b) Serial line with product quality inspection 

 
(c) Serial line with rework 

 
(d) Closed serial line 

 

(e) Assembly system 
  

(f) Multi-job assembly system 
 

Рис. 2. Production system types addressed in SPS

2.2. Parameters of machines and buffers

The following machine parameters are used in SPS analysis and design:

• Machine cycle time (τ) – the time necessary to process a part by a machine (often
measured in seconds). In many operations, τ is constant or almost constant (i.e.,
random, but with a small coefficient of variation).

• Machine capacity (c) – the number of parts a machine can produce per unit of time.
If the unit of time is an hour and the cycle time is in seconds, the machine capacity
is

(1) c =
3600

τ
parts/hour.
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• In most production systems, machines experience random downtime due to
breakdowns. The average uptime and average downtime are denoted as Tup and
Tdown (typically, in minutes). In practice, Tup and Tdown are often referred to as mean
time between failures (MTBF) and mean time to repair (MTTR), respectively. In
this paper, Tup and Tdown or MTBF and MTTR are used interchangeably.

• Machine quality parameter (g) – the probability that a part produced is non-
defective.

Thus, the machines are characterized by four independent parameters:
{τ, Tup, Tdown, g}.

The following two non-independent parameters are also used as machine
characteristics:

• Machine efficiency (e) – the fraction of time the machine is up:

(2) e =
Tup

Tup + Tdown
.

• Machine stand-alone throughput (SAT ) – the average number of parts produced by
the machine per unit of time (e.g., hour), when it is neither starved nor blocked:

(3) SAT = ce.

Note that if g < 1, the stand-alone throughput of non-defective parts is SATg = ceg.

As far as the buffers are concerned, we assume that each buffer is characterized by a
single non-negative integer N , which represents its storing capacity.

2.3. Performance metrics

Performance metrics are functions of machine and buffer parameters. The following
are of importance in practice and, therefore, in PMA-based SPS.

• Throughput (TP ) – the average number of (non-defective) parts produced by the
system per unit of time (e.g., per hour). Throughput per machine cycle time in
synchronous systems is referred to as Production Rate (PR). Obviously, TP =
H · PR, where H is the number of cycles per unit of time (e.g., per hour).

• Work-in-process in the i-th buffer (WIPi) – the average number of parts in the i-th
buffer.

• Blockage of the i-th machine (BLi) – the probability of the event that mi is up, bi
is full, and mi+1 takes no parts from the buffer.

• Starvation of the i-th machine (STi) – the probability of the event that mi is up
and bi−1 is empty.

• Lead time (LT ) – the average time a part spends in the system, being processed or
waiting for processing.
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• Scrap rate (SRi) – the average number of defective parts rejected by the i-th
inspection machine per unit of time.

For systems operating on the factory floor, these performance metrics can be evaluated
statistically, using factory floor measurements. However, since SPS is intended, in
particular, to evaluate efficacy of potential improvement projects, a statistical approach is
not applicable. Instead, either computer simulation or analytical methods must be used.
The computer simulation approach requires exact models of the production systems at
hand, with all the details involved (see, Law et al. (1991), Jerry (2005), and Altiok and
Melamed (2010)). Sometimes, such models are referred to as “digital twins.” Since creating
digital twins for complex systems is practically impossible, we use an analytical approach,
which is applicable to simplified models of the systems at hand.

Analytical methods for production systems analysis, improvement, and design have
been under development for over 50 years, starting from the pioneering papers of
Sevast’yanov (1962)2 and Buzacott (1967) and continuing in the subsequent research,
summarized in monographs by Viswanadham and Narahari (1992), Askin and Standridge
(1993), Buzacott and Shanthikumar (1993), Papadopoulos et al. (1993), Gershwin (1994),
Altiok (1997), Li and Meerkov (2009), Papadopoulos et al. (2009), and Curry and
Feldman (2009). In the current work, we use the methods of PSE (Li and Meerkov
(2009), Meerkov and Yan (2016) and Alavian et al. (2017)), mostly because they provide
provable guarantees of convergence of recursive performance evaluation procedures and
address, in a unified manner, various analysis and design problems (e.g., throughput
evaluation, bottleneck identification, leanness, lead time analysis, characteristic curves,
multi-job performance portraits, etc.). To enable PSE application on the factory floor, we
have developed a software package referred to as PSE Toolbox. A screenshot of its home
page is shown in Fig. 3. Its ten tools (with functionalities indicated in Fig. 3) can be
used for production systems analysis and design. A demo of this toolbox can be found at
pse.smartproductionsystems.com.

Рис. 3. Screenshot of PSE Toolbox homepage

2It should be pointed out that in 1957, A.N. Kolmogorov gave a lecture at a meeting of the Moscow
Mathematical Society devoted to production systems. Unfortunately, no record of this presentation could
be found. Since Sevast’yanov was, at the time, a graduate student of Kolmogorov, it is reasonable to
assume that Kolmogorov’s lecture contained ideas close to those of Sevast’yanov’s paper.
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3. Information Unit

This and two subsequent sections describe theoretical/analytical foundations of PMA
units: IU, AU, and OU, respectively.

The theoretical foundations of IU stem from the coupling between IU and AU. This
is because the model employed in AU dictates “what to measure” and “how to measure”
for IU. Thus, the problem of mathematical modeling of production systems is at the core
of IU design.

The mathematical model (MM) is intended to represent a simplified version of the
production system, capturing, however, its main features. MM consists of a structural
model and a parametric model. The structural model aims to reduce the system layout
to one of the standard block diagrams of Fig. 2. The parametric model is intended to
provide parameters of the machines and buffers included in the structural model. While
the methods of mathematical modeling of production systems are described in Li and
Meerkov (2009, Chapter 3), we note here that MM requires measurements leading to
identification of the machine and buffer parameters, i.e., {τ, Tup, Tdown, g, N}.

Typically, the machine cycle time, τ , can be easily identified by measuring the part
processing time. If the machine involves loading/unloading operations, their duration must
be added to the processing time, and, thus, the cycle time will include the total time of
part processing and handling.

The identification of the average up- and downtime, Tup and Tdown, requires more
efforts. To accomplish this, the duration of each randomly occurring up- and downtime,
tup,i and tdown,i, (where i denotes the i-th occurrence of the up- and downtime) must be
measured. Then Tup and Tdown can be calculated according to

(4) Tup =

∑n
i=1 tup,i
n

, Tdown =

∑n
i=1 tdown,i
n

,

where the number of downtime occurrences, n, should be sufficiently large to guarantee
statistically reliable estimates. Recently, we have developed a theory for selecting the
smallest number of measurements, n∗, which is necessary and sufficient to guarantee the
desired accuracy of Tup and Tdown estimates (Alavian et al. (2019)).

To identify the quality parameter, g, one must monitor the total number of parts,
Qtotal, produced, say, per shift, and the number of non-defective parts among them, Qg,
and then evaluate g by

(5) g =
Qg

Qtotal

.

Note that the values of τ , Tup, Tdown, and g must be monitored continuously, since
they do change in time.

The buffer capacity, N , is typically constant and can be obtained by evaluating the
number of parts a buffer is capable of storing. If a conveyor serves as a buffer, its capacity
can be evaluated using the method discussed in Li and Meerkov (2009, Chapter 3).

4. Analytics Unit

The Analytics Unit is at the heart of PMA operation. Therefore, it is described here
in more details.
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4.1. Analytical foundations

The foundations of AU are the analytics of PSE. They are based on exact performance
evaluation of two-machine systems (using Markov chain techniques) and recursive
aggregation procedures for approximate evaluation of larger systems. An illustration of
these techniques is given below in terms of synchronous serial lines with machines obeying
the exponential reliability model. According to this reliability model, machine up- and
downtimes are exponential random variables with parameters λ and µ, respectively.

A system of two exponential machines with parameters (λ1, µ1) and (λ2, µ2) and a
buffer of capacity N is described by a continuous-time Markov chain. Its stationary
probability distribution can be calculated, leading to the following expressions for its
production rate, PR, and probabilities of first machine blockage, BL1, and the second
machine starvation, ST2. (WIP also has been calculated, but is omitted here due to
space limitations.)

PR = e2[1−Q(λ1, µ1, λ2, µ2, N)]

= e1[1−Q(λ2, µ2, λ1, µ1, N)],
(6)

BL1 = e1Q(λ2, µ2, λ1, µ1, N),(7)
ST2 = e2Q(λ1, µ1, λ2, µ2, N),(8)

where

(9) Q(λ1, µ1, λ2, µ2, N) =


(1−e1)(1−φ)
1−φe−βN , if λ1

µ1
6= λ2

µ2
,

λ1(λ1+λ2)(µ1+µ2)
(λ1+µ1)[(λ1+λ2)(µ1+µ2)+λ2µ1(λ1+λ2+µ1+µ2)N ]

, if λ1
µ1

= λ2
µ2
,

ei =
µi

λi + µi
, i = 1, 2,(10)

φ =
e1(1− e2)
e2(1− e1)

,(11)

β =
(λ1 + λ2 + µ1 + µ2)(λ1µ2 − λ2µ1)

(λ1 + λ2)(µ1 + µ2)
.(12)

It turns out that a similar analysis for longer lines cannot be carried out in a closed-
form. Therefore, approximations are necessary. As mentioned before, we have developed
such approximations using a recursive aggregation procedure. To describe this procedure,
consider a serial line with M machines, denoted as mi, each characterized by parameters
(λi, µi), i = 1, ...,M , and M − 1 buffers, denoted as bi, with capacity Ni, i = 1, ...,M − 1,
separating each pair of consecutive machines. Aggregate the last two machines, mM−1
and mM , into a single exponential machine denoted as mb

M−1, where the superscript b
stands for the backward aggregation. The parameters of mb

M−1 are selected using the
second expression in (6) (see Li and Meerkov (2009, Subsection 11.1.2) for details). Next,
aggregate this machine, i.e., mb

M−1, with mM−2 to obtain another aggregated machine,
mb
M−2. Continue this procedure until all the machines are aggregated into mb

1, which
completes the backward phase of the aggregation procedure.
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The subsequent forward aggregation consists of the following: Aggregate the first
machine m1 with the aggregated version of the rest of the line, i.e., mb

2. This results in
the aggregated machine mf

2 , where f stands for the forward aggregation. The parameters
of mf

2 are selected using the first expression of (6). Next, aggregate mf
2 with mb

3, resulting
in mf

3 and so on until all the machines are aggregated into mf
M , which completes the

forward phase of the aggregation procedure. Then, iterate between backward and forward
aggregations. Analytically, this recursive procedure can be represented as follows:

µbi(s+ 1) = µi(1−Q(λbi+1(s+ 1), µbi+1(s+ 1), λfi (s), µ
f
i (s), Ni)),

i = 1, . . . ,M − 1,

λbi(s+ 1) = λi + µiQ(λ
b
i+1(s+ 1), µbi+1(s+ 1), λfi (s), µ

f
i (s), Ni),(13)

i = 1, . . . ,M − 1,

µfi (s+ 1) = µi(1−Q(λfi−1(s+ 1), µfi−1(s+ 1), λbi(s+ 1), µbi(s+ 1), Ni−1)),

i = 2, . . . ,M,

λfi (s+ 1) = λi + µiQ(λ
f
i−1(s+ 1), µfi−1(s+ 1), λbi(s+ 1), µbi(s+ 1), Ni−1),

i = 2, . . . ,M,

s = 1, 2, . . . ,

with initial conditions

λfi (0) = λi, µfi (0) = µi, i = 2, . . . ,M − 1,

and boundary conditions

λf1(s) = λ1, µf1(s) = µ1, s = 1, 2, . . . ,

λbM(s) = λM , µbM(s) = µM , s = 1, 2, . . . ,

where function Q is defined by (9).
Те о р ем а 1. Recursive procedure (13) has the following properties:

(i) The sequences λf2(s), . . ., λ
f
M(s), µf2(s), . . ., µ

f
M(s), and λb1(s), . . ., λbM−1(s), µb1(s),

. . ., µbM−1(s), s = 1, 2, . . . are convergent with the limits denoted as λfi , µ
f
i , λbi and

µbi .

(ii) These limits are unique solutions of the following equations:

µbi = µi[1−Q(λbi+1, µ
b
i+1, λ

f
i , µ

f
i , Ni)], i = 1, · · · ,M − 1,

λbi = λi + µiQ(λ
b
i+1, µ

b
i+1, λ

f
i , µ

f
i , Ni), i = 1, · · · ,M − 1,

µfi = µi[1−Q(λfi−1, µ
f
i−1, λ

b
i , µ

f
i , Ni−1)], i = 2, · · · ,M,

λfi = λi + µiQ(λ
f
i−1, µ

f
i−1, λ

b
i , µ

f
i , Ni−1), i = 2, · · · ,M.

(14)

(iii) In addition, these limits satisfy the relationships:

efM = eb1
= ebi+1[1−Q(λ

f
i , µ

f
i , λ

b
i+1, µ

b
i+1, Ni)](15)

= efi [1−Q(λbi+1, µ
b
i+1, λ

f
i , µ

f
i , Ni)], i = 1, . . . ,M − 1,
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where

efi =
µfi

λfi + µfi
, ebi =

µbi
λbi + µbi

, i = 1, . . . ,M.

�

Proof : See Li and Meerkov (2009, Chapter 11).

Statement (iii) implies that, from the point of view of each buffer bi, i = 1, ..,M − 1,
the upstream of the serial line is represented by the aggregated machine mf

i and the
downstream by the aggregated machine mb

i+1. Therefore, the performance metrics of such
two-machine line can be evaluated using expressions (6)-(9). In other words, the estimates
of PR, BLi, and STi can be introduced as follows:

P̂R = ebi+1[1−Q(λ
f
i , µ

f
i , λ

b
i+1, µ

b
i+1, Ni)]

= efi [1−Q(λbi+1, µ
b
i+1, λ

f
i , µ

f
i , Ni)], i = 1, . . . ,M − 1,(16)

B̂Li = eiQ(λ
b
i+1, µ

b
i+1, λ

f
i , µ

f
i , Ni), i = 1, . . . ,M − 1,(17)

ŜT i = eiQ(λ
f
i−1, µ

f
i−1, λ

b
i , µ

b
i , Ni−1), i = 2, . . . ,M.(18)

The accuracy of these estimates has been evaluated numerically, and it has been shown
that the error of P̂R in most cases is well within 1%. This aggregation procedure and its
generalizations for other types of production systems have been implemented in AU for
its Performance Analysis functionality.

Equations (14) contain all qualitative and quantitative properties of production
systems at hand. Deriving these properties, solutions to a number of industrially important
problems have been obtained. Due to space limitations, only three of them, with a major
role in PMA, are discussed below: the problem of bottleneck identification, the problem
of product-mix performance portrait, and the problem of feedback control of raw material
release to ensure the desired lead time.

4.2. Bottleneck identification problem

In practice, the bottleneck is typically defined as the worst machine in the system as
far as its SAT is concerned. This definition does not take into account the structure of
the system, buffers capacity, position of the machine in the system, etc. To account for
these features, we define the bottleneck as follows:

Definition 4.1: The bottleneck (BN) is the machine with the largest effect on the
system throughput (TP ), quantified as

(19)
∂TP

∂ci
>
∂TP

∂cj
,∀j 6= i,

where, as mentioned in Section 2, ci is the i-th machine capacity.
As it turns out, the machine with the smallest SAT is necessarily the BN only if the

system has infinite buffers or is umimprovable with respect to workforce reallocation (i.e.,
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has all buffers on the average half-full). In all other cases, any machine, including the one
with the largest SAT, can be the BN.

Unfortunately, the derivatives involved in (19) cannot be calculated analytically
because TP (as a function of c1, . . . , cM) for M > 2 cannot be represented in closed-form.
Therefore, the following simplified procedure has been developed (see Li and Meerkov
(2009, Chapters 5 and 13)):

• Evaluate BL and ST of all machines included in the MM’s structural model.

• Assign arrows between each pair of consecutive machines according to the rule: If
BLi > STi+1, assign the arrow pointing from mi to mi+1; if BLi < STi+1, assign
the arrow pointing from mi+1 to mi.

• If there is only one machine with no emanating arrows, it is the BN (in the sense of
(19)).

• If there are multiple machines with no emanating arrows, the one with the largest
severity is the primary BN, where the bottleneck severity is defined by:

(20)
S1 = |ST2 −BL1|,
Si = |STi+1 −BLi|+ |STi −BLi−1|, i = 2, ...,M − 1,

SM = |STM −BLM−1|.

This procedure has also been implemented in AU as a part of its Performance Analysis
functionality.

4.3. Product-mix performance portrait of multi-job production systems

The idea of product-mix performance portrait (PMPP) for multi-job production
systems is motivated by the state-space portrait of dynamical systems (see, for instance,
Andronov et al. (1959) and Khalil (2002)). Indeed, the latter allows to graphically
represent the system trajectories for various initial conditions. Similarly, the former allows
to graphically represent the system performance for various values of product-mix.

More specifically, PMPP represents TP and BN as functions of the product-mix and,
thus, allows the manager to assess the system behavior for all product-mixes, which often
change on the daily basis. This leads to managerial actions corresponding to the changes
in TP . The analytical methods for calculating TP have been developed in Alavian et al.
(2017) and implemented as an AU functionality.

4.4. Feedback control of raw material release

An important characteristic of production systems is the Characteristic Curve (CC),
which describes production lead time (LT ) as a function of the raw material release rate
or throughput. In systems with hardware-unlimited buffers, this function has a knee-type
behavior (see Fig. 4, where the dot indicates the knee). Operating the system below
the knee is not efficient, since TP can be increased without an appreciable increase in
LT . Operating above the knee is also counterproductive − LT becomes extremely large
without a significant increase of TP . Thus, the desirable operating point is at the knee.
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Рис. 4. Characteristic curve

To ensure the system operation at the knee or at any desired point on CC, the raw
material release rate must be controlled. If the machine parameters are known precisely,
this can be accomplished by calculating the release rate corresponding to the desired point
on CC. However, when the machine parameters are not known precisely (e.g., changing in
time), the open-loop control of the release rate would not work and a feedback approach
is necessary. Recently, this has been developed in Meerkov and Yan (2016) for the case of
serial lines. It turned out that a simple relay-type control law can be used for this purpose.
Below is the description of this law.

Consider a serial line with infinite buffers andM machines with exponential reliability
model. An estimate of lead time in such a system is given by

L̂T =Mτ +
M−1∑
i=0

(
ei
µi

+
ei+
µi+1

)(
1− ei+1

ei+1 − e0

)
,(21)

where, as before, ei, i = 1, . . . ,M , is the machine efficiency, µi, i = 1, . . . ,M , is the inverse
of MTTR, and e0 is the efficiency of the virtual machine modeling the raw material release
mechanism.

For any admissible desired lead time, LTd, the release rate, e∗0, which ensures this lead
time, is the unique real root of the following M -th order polynomial equation:

(LTd −Mτ)
M−1∏
i=0

(ei+1 − e0)− (1− e1)
(
e0
µ0

+
e1
µ1

)M−1∏
i=1

(ei+1 − e0)

−
M−1∏
i=1

(
(1− ei+1)

(
ei
µi

+
ei+1

µi+1

) M−1∏
j=0,j 6=i

(ej+1 − e0)

)
= 0.(22)

Based on this e∗0(LTd), the deterministic hourly release rate, E∗H is defined as

E∗H = bHe∗0(LTd)c,(23)

where bxc denotes the largest integer not greater than x, and H is the number of cycles
in an hour.

Finally, to define the closed-loop control law of raw material release, represent the
nominal work-in-process in the system as follows:

WIPnominal =
e∗0
τ
(LTd −Mτ).(24)
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Based on the above, the relay-type feedback release control law is given by

E(s+ 1) =

{
E∗H , if WIPtotal(s) 6 WIPnominal,
0, otherwise,(25)

where s = 0, 1, . . . , is the index of the release interval; E(s + 1) is the amount of raw
material released at the beginning of release interval s + 1; E∗H is defined in (23); and
WIPtotal(s) is the real-time total work-in-process in the system at the end of release
interval s.

This control law has been implemented in the Characteristic Curve functionality of
AU.

5. Optimization Unit

The theoretical foundations of OU are based on search procedures typically used in
the area of Artificial Intelligence. The reason is in the following:

As mentioned in Section 1, OU is intended to calculate an optimal advice to Operations
Manager, based on the entered DPI/AAS and consistent with the System Health provided
by AU. While this is indeed an optimization problem, the usual optimization tools,
such as linear and nonlinear programming, cannot be used to find a solution. This is
because the performance metrics to be optimized (e.g., throughput, work-in-process,
production lead time, etc.) cannot be expressed as explicit functions of the system
parameters (e.g., machine cycle time, MTBF, MTTR, buffer capacity, number of carriers,
etc.). The situation here is similar to that in the area of computer chess games, which
led to the development of various search techniques, guided by the knowledge of the
game and intuition of the designers. Similarly, in the case of OU, the only available
approach is to use search procedures in the parameter space, enhanced by the fundamental
laws of Production Systems Engineering and, in particular, qualitative properties of
the performance metrics (e.g., continuity, monotonicity, reversibility, and improvability).
These properties have been investigated in Li and Meerkov (2009) and Meerkov and Yan
(2016), and have been utilized in the algorithms developed for OU.

6. PMA Software/Hardware Implementations and PMA-based SPS
Workflow

While Sections 3-5 outline analytical/theoretical foundations of PMA, the current
section provides a few remarks on its software and hardware implementations as well as
on the PMA-based SPS workflow.

6.1. Software and hardware implementations

The PMA software is implemented as a web-based application. Its back-end, written
in Node JS programming language, is responsible for storing and processing of production
systems and users’ data. All PMA calculations are implemented in the backend. The front-
end is developed using JavaScript. It handles the data representation and visualization.
The PMA software can be accessed from the cloud as the most economic and scalable
option, or be installed on-premise, which brings faster performance and improved security.
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The PMA is installed on the factory floor as a box consisting of a server and a
display (see Fig. 5). The server is intended to store historical data on manufacturing
equipment status (obtained through factory floor measurements) and to maintain the
PMA’s software. The display allows for entering the managerial inputs and presenting the
PMA outputs.

Рис. 5. PMA box

6.2. PMA-based SPS workflow

The PMA-based SPS workflow is illustrated by a screenshot of Fig. 6. Its “Systems”
block lists the production systems for which the PMA has been programmed. The five
subsequent blocks represent the PMA per se and its interactions with the Operations
Manager. Finally, the last block reports the measured productivity improvement, after the
suggested plant modifications have been implemented. A few comments on the operation
of these blocks are in order.

Рис. 6. PMA-based SPS workflow

As mentioned before, the IU block maintains and continuously updates mathematical
models of the production systems for which the PMA has been programmed. These models
are typically constructed by PMA programmers with the help of the Modeling module of
the PSE Toolbox.

Using these models, AU carries out calculations in order to provide the following
outputs:

• Performance Analysis: It shows the system’s throughput, work-in-process,
probabilities of blockages and starvations, and the bottleneck.
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• System Diagnostics: It provides information on causes of production losses and
buffering efficacy.

• What-if Analyses: It quantifies effects of potential machine and buffer parameter
modifications on the overall system performance.

• System Health: It summarizes the main features of all above mentioned outputs; this
information assists the Operations Manager in formulating the goals of the desired
performance improvement.

If needed, the AU may be programmed to produce system-specific outputs such as:

• Product-mix Performance Portraits – for multi-job production systems.

• Characteristic Curves – for systems with hardware-unlimited buffers.

The Managerial Input block allows the Operations Manager to enter one or more
scenarios of potential improvement. The OU output displays which of these scenarios
can be implemented on the factory floor to achieve the desired improvements and
which cannot, along with the optimal equipment modifications, necessary for achieving
the predicted improvements. The Managerial Approval block allows the OM to select
a specific scenario for implementation on the factory floor. Finally, the Measured
Productivity Improvement block displays the results of the continuous improvement
project implemented on the factory floor and compares them with those predicted by
OU.

Two demonstrations of PMA-based SPS operation are presented in the subsequent
sections. In both of these demonstrations, due to proprietary reasons, the system
parameters have been modified, and the efficacy of the continuous improvement projects
has been evaluated using discrete event simulations of the plants involved.

7. Demonstration: Smart Automotive Underbody Assembly System3

The automotive underbody assembly is a large-volume production system,
manufacturing two job-types in multi-job regime. Its layout is shown in Fig. 7, where
WH and SB denote Wheel Housing and Seat Bar, respectively. This section presents
screenshots demonstrating PMA operation programmed for this system.

The output of IU is shown in Fig. 8. It provides the system’s structural and parametric
models, as well as the product-mix, r1 = 0.4 and r2 = 0.6, where ri, i = 1, 2, is the fraction
of job-type i being manufactured.

One of the AU outputs, Product-mix Performance Portrait, is shown in Fig. 9. It
characterizes the system’s performance for all product-mixes. Specifically, it indicates
that TP is a non-monotonic (concave) function of r1, reaching its maximum in the range
r1 ∈ (0.31, 0.53). As for the BN, it is Op. 2 (Motor Compartment 2) for r1 ∈ [0, 0.31);
Op. 6 (Wheel Housing) for r1 ∈ (0.31, 0.53); and Op. 1 (Motor Compartment 1) for
r1 ∈ (0.53, 1].

Another AU output, Performance Analysis, shown in Fig. 10, displays the values of
machines efficiency, stand-alone throughput, and blockages and starvations, along with the

3The authors acknowledge the assistance of industrial partners in carrying out this case-study.
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Рис. 7. Automotive underbody assembly system layout

Рис. 8. IU output of PMA programmed for smart automotive underbody assembly system

buffers occupancy and system’s throughout, all calculated for the product-mix (0.4,0.6).
As one can see, TP = 42.85 JPH and TP s for job-types 1 and 2 are 17.14 JPH and 25.71
JPH, respectively. Also it shows that the BN, identified using the arrow-based rule of
Subsection 4.2, is Op. 6.

The third AU output, System Diagnostics, quantifies the losses due to buffers (5.58
JPH) and losses due to machines (13.43 JPH), calculated according to:

Losses due to buffers = TP if buffers were infinite− TP,(26)
Losses due to machines = TP if machines had no breakdowns(27)

− TP if buffers were infinite.

Thus, the total TP losses are 19.01 JPH, i.e., 30.7%. Also, this output quantifies buffering
potency, which is a measure of buffers efficacy in rejecting perturbations due to machine
breakdowns. The term “Weakly potent,” shown in Fig. 11, indicates that the worst machine
is indeed the BN, but the system TP is too much lower than the SAT of the BN machine.

The next AU output, What-if Analysis (Fig. 12), represents the effect of changing
machine parameters on system’s TP . It shows that if MTTR of Wheel Housing is
decreased by about 25%, TP increases, almost linearly, from 42.85 JPH to 45.7 JPH,
but remains constant after that. The reason can be found looking at the right-hand side
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Рис. 9. AU output of PMA programmed for smart automotive underbody assembly
system: Performance Portrait

Рис. 10. AU output of PMA programmed for smart automotive underbody assembly
system: Performance Analysis
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Рис. 11. AU output of PMA programmed for smart automotive underbody assembly
system: System Diagnostics

of Fig. 12: when MTTR of Wheel Housing is reduced by 25%, the BN switches to Rear
Compartment, and no further improvement of Wheel Housing could increase TP .

Finally, the last AU output, System Health (Fig. 13), summarizes the previous findings
along with evaluating effectiveness of machines and buffers calculated according to

Effectiveness of machines =
TP

TP if machines had no breakdowns
,(28)

Effectiveness of buffers =
TP

TP if buffers were infinite
.(29)

This offers OM a possibility to quickly assess the problems with the system in order to
formulate potential scenarios of continuous improvement.

These scenarios, entered in the Managerial Input block, are shown in Fig. 14. As one
can see, two of them require increasing TP to 47 JPH (about 10% improvement) and two
others maximizing TP , all under different AAS constraints.

The outputs of OU for each of these scenarios are shown in Fig. 15. It indicates that
Scenario 1 would not lead to the desired improvement, while Scenario 2 would (under
the equipment changes indicated). Scenarios 3 and 4 would result in a substantial TP
improvement. Selecting a scenario (see Fig. 16) and implementing it in the plant leads to
the TP improvement close to that predicted by OU (Fig. 17).

This demonstration illustrates efficacy of PMA for automating decision-making in
large-volume multi-job production systems.
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Рис. 12. AU output of PMA programmed for smart automotive underbody assembly
system: What-if Analyses

Рис. 13. AU output of PMA programmed for smart automotive underbody assembly
system: System Health

8. Demonstration: Smart Hot-dip Galvanization Plant4

The hot-dip galvanization plant is a small-size manufacturing operation intended to
coat iron sheets with a layer of Zinc to avoid oxidation and rusting. Based on the process
steps, this production system is modelled as a serial line (see the output of IU in Fig. 18).

4The authors are grateful to Azarakhsh hot-dip galvanization factory for their help in this case-study.
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Рис. 14. Managerial Input of PMA programmed for smart automotive underbody
assembly system

Its main feature is that there is no hardware-constrained buffering (as indicated by the
open rectangles in Fig. 18). This leads to excessively large WIP and unacceptable LT .
Therefore, the goal of PMA-based SPS in this case is to both improve TP and achieve a
desired LT , using feedback release control of raw material based on the method described
in Subsection 4.4. Below is an illustration of this SPS operation.

The AU outputs of the PMA programmed for this system are listed at the top of Fig.
19. Along with the usual outputs, a system-specific output of AU is the Characteristic
Curve (CC), which represents the behaviour of LT as a function of the raw material
release rate; this information provides OM with a general understanding of the system’s
capability. The System Health output of AU is in Fig. 19(b); it shows, in particular, that
TP losses are over 20% and the production lead time is over 18 hours; it indicates that
improvement of this system requires both increasing TP and substantially decreasing LT .
This is carried out using a two-stage procedure: First, OM enters the scenarios for TP
improvement (see Fig. 20, where a 20% TP increase is requested). Based on this input,
OU produces the output shown in Fig. 21, along with the managerial decision to submit
Scenario 1 for implementation. The CC for the new (improved) system is shown in Fig. 22.
In addition, this figure offers OM the possibility to enter the desired lead time (LTd = 20
min, see the dot on the CC in Fig. 22) and the release interval (RI = 60 min). Clicking
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Рис. 15. OU outputs of PMA programmed for smart automotive underbody assembly
system
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Рис. 16. Managerial Approval of PMA programmed for smart automotive underbody
assembly system

Рис. 17. Measured Productivity Improvement output of PMA programmed for smart
automotive underbody assembly system

Рис. 18. IU output of PMA programmed for smart hot-dip galvanization plant
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(a) Characteristic Curve

(b) System Health

Рис. 19. AU outputs of PMA programmed for smart hot-dip galvanization plant

Рис. 20. Managerial Input of PMA programmed for smart hot-dip galvanization plant
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on “Calculate” produces the parameters of the closed-loop raw material release policy,
indicating that:

• The release rate per hour to ensure LTd is 28 parts.
• The release should take place only if the total WIP at the beginning of an hour is

less than 5 parts.
• This closed-loop release policy maintains this LTd, while the resulting TP is close

to 28 JPH and the average WIP in the system is 12.84 jobs.

Рис. 21. OU output of PMA programmed for smart hot-dip galvanization plant

This demonstration illustrates efficacy of PMA for automating decision-making in
production systems with hardware-unlimited buffers.

9. Conclusions and Future Work

This paper presents the structure and analytics of PMA as a central element of SPS.
The main requirement for successful operation of PMA-based SPS is the availability of
reliable data concerning the manufacturing equipment status in real time. In most cases,
these data can be gleaned from PLCs used on the factory floor for equipment automation.

While the results reported are encouraging, a number of PMA-related problems remain
open. They include:

• Develop a method for automated data cleaning and verification. It is quite common
that the data collected on the factory floor contain errors. Failure to detect and
correct these errors reduces the fidelity of the parametric model employed in IU.

• Develop analytical methods for PMA-based SPS operation in transient regimes, i.e.,
having AU operating not on the steady states of performance metrics, but on their
real-time characteristics.
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Рис. 22. AU output and lead time control of the improved system for smart hot-dip
galvanization plant

• Analyze the sensitivity of TP to various machine parameters (e.g., cycle time,
MTBF, MTTR, etc.). This would increase the effciency of search algorithms
employed in OU.

• Develop search procedures for simultaneous optimization of several performance
metrics, e.g., TP and LT (in the framework of multi-criteria optimization).

Although solving each of these open problems is of importance, the overarching items
of the future work are applications of PMA-based SPS in large, mid-size, and small
manufacturing organizations.

Abbreviations and Notations

Abbreviations: AAS – admissible action space; AU – analytics unit; BN – bottleneck
machine; CC – characteristic curve; DPI – desired productivity improvement; IU –
information unit; JPH – jobs-per-hour; MM – mathematical model; MTBF – mean
time between failures; MTTR – mean time to repair; OM – operations manager;
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OU – optimization unit; PLC – programmable logic controller; PMA – programmable
manufacturing advisor; PMPP – product-mix performance portrait; PSE – production
systems engineering; SPS – smart production system.

Notations: b – buffer; BL – probability of blockage; c – machine capacity; e – machine
efficiency; E – raw material release; g – machine quality parameter; H – number of
cycles per unit of time; λ – exponential distribution parameter of machine uptime; LT
– lead time; m – machine; µ – exponential distribution parameter of machine downtime;
n – number of downtime occurrences; N – buffer capacity; PR – production rate; Qg –
number of good parts produced; Qtotal – total number of parts produced; SAT – stand-
alone throughput; ST – probability of starvation; τ – machine cycle time; tdown,i – duration
of i-th downtime; tup,i – duration of i-th uptime; Tdown – average downtime; Tup – average
uptime; TP – throughput; WIP – work-in-process.
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